Mathématiques et Informatique Appliquées
du Génome à l'Environnement
Les mouvements commerciaux d’animaux constituent un vecteur privilégié pour la propagation de maladies infectieuses. En France, les exigences de traçabilité se sont traduites par la mise en place de bases de données nationales de suivi des animaux. Dans cette thèse, nous étudierons des modèles de graphes aléatoires spatialement explicites permettant de reproduire les interactions à courte et longue distance constatées empiriquement dans les mouvements commerciaux d’animaux. Nous nous placerons dans le cadre des réseaux scale-free percolation (SFP), qui combinent une inhomogénéité intrinsèque des nœuds avec un aléa dépendant de leur distance géographique. Nous établirons rigoureusement des relations générales entre les propriétés génératives du réseau (distance géographique et relations commerciales) et les caractéristiques des processus épidémiques qui s’y propagent. Nous combinerons ensuite les données de mouvements d’animaux avec des informations géographiques de haute résolution (SIG) pour aboutir à une représentation spatialisée des réseaux commerciaux d’animaux d’élevage permettant la calibration des modèles de graphes étudiés et l’étude de scénarios épidémiques variés.
Les pollinisateurs sauvages assurent une fonction essentielle au sein des agroécosystèmes : la pollinisation des plantes à fleurs et des cultures. Pourtant leur déclin actuel est imputé à différents facteurs anthropiques, dont l’utilisation de pesticides. Les connaissances sur l’exposition des pollinisateurs sauvages aux pesticides et les effets de cette exposition en conditions naturelles restent cependant éparses. Cette thèse vise à renforcer les connaissances sur les effets des pesticides en fonction de leurs modalités d’application et en tenant compte des facteurs pouvant les accentuer (usage d’herbicides, rémanence) ou les atténuer (habitats semi-naturels, agriculture biologique dans le voisinage). Elle reposera sur l'analyse des bases de données de suivis à long terme et à grande échelle, de pollinisateurs sauvages, de pratiques agricoles et de résidus de néonicotinoïdes dans les nectars de colza et tournesol et dans les sols d’une centaine de parcelles échantillonnées chaque année depuis 2013 dans un paysage dont l’usage des sols est connu, la Zone Atelier Plaine & Val de Sèvre (450 km²). Le premier objectif de la thèse est d'analyser les effets sur l'ensemble des pollinisateurs sauvages des traitements insecticides et de leurs interactions avec les variables locales (présence d’herbicides, de résidus de néonicotinoïdes) et des variables du paysage. Cette analyse nécessitera le développement d'une méthode d'analyse de données multivariées géolocalisées permettant d'estimer les effets des variables locales et les effets du paysage (i.e. permettant d'estimer l'intensité et l'échelle spatiale de ces effets). Le développement de cette méthode reposera sur les approches de régression d'analyses multivariées bayésiennes développées actuellement par Olivier David (dynenvie, MaIAGE) et s'appuiera sur le cadre de modélisation des effets du paysage proposé par la méthode siland (Carpentier & Martin, 2021), i.e. modéliser les effets du paysage comme la convolution d'une fonction d'influence spatiale (appartenant à une famille de fonction de densité spatiale paramétrique choisie) avec la distribution spatiale des polygones et segments représentant les éléments du paysage. Le second obejctif de la thèse est de proposer un indicateur de risque pour les pollinisateurs sauvages calculés à partir des pratiques et des paysages. Le calcul de cet indicateur de risque reposera sur une minimisation des risques pour l'ensemble des pollinisateurs. Le développement de ce critère s'intègre dans une des nouvelles perspectives de recherche de l'équipe dynenvie concernant l'optimisation multicritère intégrant la variabilité d'estimation associée au modèle utilisé pour calculer ce critère. Cette thèse sera dirigée par Ivan Sache (Pr. AgroParisTech, UFR EAI, Ecologie Adaptation Interaction) et co-encadrée par Florence Carpentier (MCF APT, acceuillie pour sa recherche à l'unité MaIAGE). Sabrina Gaba (INRAE) collaborera à cette thèse en tant que porteuse du projet Pollihealth, lors des discussions et des séjours de la doctorante au CEBC, où la doctorante présentera ces résultats et participera à la collecte de nouvelles données. Un comité de suivi de thèse avec des chercheurs expérimentés sera organisé chaque année pour obtenir un avis extérieur sur le travail de thèse. Il sera constitué de chercheurs représentant les différentes disciplines impliquées dans cette thèse interdisciplinaire : agroécologie, statistiques et écotoxicologie.
Directeur.trice : Ivan Sache - Encadrant(s) : Florence Carpentier - Equipes : DynenvieThe thesis project aims to interface multiple in silico models describing host-microbiota interaction at different scales. While the developed models encompass various living entities, the focus will primarily be on mice and humans due to the availability of extensive data. At the microscopic level, these novel advancements will involve coupling a spatially distributed model of colon fluid mechanics with a crypt model, simulating interactions between the host and the microbiota. Thus, effects generated at the microscopic scale will influence the behavior of the host's digestive and cardiovascular systems at the macroscopic scale. Modeling these macroscopic systems is crucial for integrating individual-specific data or biological measurements, which will be compared with simulation results from the model.