Mathématiques et Informatique Appliquées
du Génome à l'Environnement

 

 

 

HyphAMaize

Titre du projet
Determining the role of HYPHospheric bacteria in the Arbuscular mycorrhizal fungi-mediated nutrient supply and growth promotion of MAIZE under low-input agriculture
Nom de l'appel d'offre
AAPG 2025
Agence de moyen
ANR
Etat
Présélectionné
Année de soumission
2024
Défi/axe ANR
Axe A.03 : Biologie des animaux, des organismes photosynthétiques et des micro-organismes
Equipe(s)
Migale
Coordinateur.trice
Benoît ALUNNI (INRAE, Versailles)
Participants de MaIAGE
V. Loux, O. Rué, H. Chiapello
Partenaires (hors MaIAGE)
IJPB (Versailles), LRSV (Toulouse), Agronutrition (Carbonne), SSBio (Lincoln, USA)
Année de démarrage - Année de fin de projet
2025-2028
Date de fin du projet
Résumé
The HyphAMaize project aims to explore the synergistic interactions between arbuscular mycorrhizal fungi (AMF) and their associated hyphosphere-associated bacteria (HAB) to enhance maize growth in low-input agricultural systems. As a sustainable alternative to conventional farming, this research focuses on reducing the reliance on chemical fertilizers that contribute significantly to global greenhouse gas emissions. AMF, which establish symbiotic relationships with plant roots, play a critical role in nutrient uptake, exchanging essential elements like phosphorus and nitrogen for carbon from the host plant. The project's main goal is to identify key metabolic functions of HAB that promote AMF symbiosis and nutrient delivery, ultimately leading to improved maize performance. HyphAMaize is structured into four work packages (WPs). WP1 involves isolating and characterizing HAB that enhance the AMF's ability to solubilize minerals and improve soil foraging, using mini-maize plants and Rhizophagus irregularis AMF grown in two-compartment systems as a model system. WP2 focuses on analyzing the taxonomic and metabolic diversity of HAB to determine their core functions, using genomic and transcriptomic approaches. WP3 aims to develop a holobiont-scale metabolic model (HSM) integrating maize, AMF, and HAB to predict optimal SynCom (synthetic microbial communities) compositions for maize growth. WP4 tests the elite HAB SynComs in greenhouse and field conditions to assess their impact on maize (B73 line, a mycorrhizal symbiosis-deficient mutant line, and a F1 hybrid) performance under low-nutrient scenarios. The interdisciplinary consortium combines expertise from microbiology, plant biology, genomics, and mathematical modeling to develop multifunctional SynComs that could serve as commercial bioinoculants. The project integrates fundamental research with practical applications, aiming to create sustainable agricultural innovations that align with agroecological principles.