Mathématiques et Informatique Appliquées
du Génome à l'Environnement

 

 

KPREL

Intitulé du projet
Knowledge Base-Enhanced Prompting for Relationship Extraction
using Large Language Models
Nature du financement
Institut Convergence
État du projet
Accepté
Année de soumission
2024
Programme / appel + année
International Mobility - Institut DATAIA
Equipe(s) impliquée(s) dans le projet
Bibliome
Coordinateur·trice (nom et prénom)
Claire Nédellec
Nom(s) du(des) participant(s) - MaIAGE
R. Bossy, C. Nédellec
Nom(s) du(des) partenaire(s) (nom, labo et localisation) - Hors MaIAGE
Jingbo Xia, Xinzhi Yao
Date de fin du projet
Résumé
The diversity and highly structured nature of the information explicitly provided to the LLM significantly complicate the construction of hard prompts. Building on prior research in event extraction and knowledge injection for LLMs, we will explore various representation strategies. One direction involves comparing formal representations of relationship schemas (including argument types and relationship labels) and explicit Knowledge Base (KB) information, with their verbalized counterparts. Furthermore, the ordering of prompt components, whether by semantic similarity or intrinsic nature, has emerged as a critical factor and will be rigorously assessed.