Tessellation Gibbs model for agricultural landscapes: parameter estimation
Master internship project proposal

Hosting institution: INRAE, MaIAGE Research Unit (https://maiage.inra.fr/en)
Internship site: Jouy-en-Josas (Yvelines department)
Supervisors: Katarzyna Adamczyk (INRAE, MaIAGE), Radu Stoica (Université de Lorraine, IECL)
Starting date: March or April 2020, duration: 4 to 6 months
Contact: Katarzyna Adamczyk (Katarzyna.Adamczyk@inra.fr)

Context
Agricultural landscape simulators are used to study the impact of landscape elements on spatial processes in agro-ecology, such as spore dispersal, gene flow between species or surface runoff. They allow for studying the processes at a large spatial scale and thus account for the long-range interactions.

The MaIAGE Unit is developing a simulator of agricultural landscapes, approximated by polygonal tessellations. A polygonal tessellation of a two-dimensional domain is a finite subdivision of this domain into polygonal sets with disjoint interiors. The simulator is based on the Gibbs model of tessellations [1], defined by an energy function depending on tessellation summary statistics that we want to control. The model simulation algorithm is implemented in R library. Estimation of model parameters from landscape patterns enables simulating the tessellations with summary statistics centered on the values observed in a landscape (see figure 1).

Internship goal
The model parameters are currently estimated by Monte Carlo Maximum Likelihood method. This approach is efficient when the number of statistics included in the model remains low. When the parametric dimension of the model increases, the convergence issues of the optimization algorithm appear. Yet, in order to simulate landscape-like tessellations we need to test high-dimensional sets of summary statistics, likely to be correlated. Thus we are looking for the estimation method that would be robust enough in this context.

The goal of the internship is to test alternative estimation approaches. In particular, we would like to compare MCML method with inference based on the ABC Shadow algorithm proposed in [3]. This algorithm allows the approximate sampling of the posterior distribution, hence hypothesis tests, confidence intervals and model choice procedures can be proposed in order to analyze landscape modelling.

Candidate profile
We are looking for a student in Applied Mathematics or Statistics with strong computer skills and knowledge of R language, motivated by applications in environmental sciences. First experiences in stochastic modelling and MCMC algorithms will be an asset.

References

Figure 1: (a) agricultural landscape, (b) simulation of the model [1] fitted to the landscape data.