Béreux Stéphane
: Modéliser et prédire les modifications microbiennes associées à l’émergence de maladies - ED 574 EDMH - Début de la thèse :
Directeur.trice : Mahendra Mariadassou - Encadrant(s) : Magali Berland, Sébastien Fromentin - Equipes : StatInfOmics

Epain Victor
: Développement de méthodes efficaces, précises et conviviales pour corriger, assembler et aligner des lectures issues des technologies de séquençage 3e génération. - ED601 MathSTIC - Début de la thèse :

Le développement d’algorithmes efficaces et parcimonieux en matière de ressources informatiques et leur implémentation sous forme de logiciels faciles à utiliser ont un très fort impact sur la communauté des sciences de la vie. Ces logiciels sont largement utilisés par de très nombreuses équipes de par le monde.

L’objectif de cette thèse est de se focaliser sur ces cas difficiles et de développer des algorithmes adaptés à cette complexité à la fois pour l’assemblage et pour l’alignement à partir de données de séquençage de 3génération. Une attention particulière sera portée au passage à l’échelle de ces logiciels lorsqu’on est amené à analyser des données génomiques eucaryotes.  En moyenne, il existe un facteur 1000 entre les longueurs des génomes de procaryotes et d’eucaryotes « caractéristiques », ce qui impose de très fortes contraintes sur le choix des algorithmes à implémenter tant en matière de vitesse d’exécution du programme que de mémoire vive utilisée. Il est vraisemblable qu’un travail important de parallélisation massive du code sera nécessaire pour obtenir de bonnes performances dans ce cas.

Directeur.trice : R. Andonov INRIA - J-F Gibrat INRAE - Encadrant(s) : D Lavenier (INRIA) - Equipes : StatInfOmics

GOUTORBE Benoit
: Développement et application d'une méthode précise et efficace pour l'analyse du microbiote humain à visée clinique - ED577 SDSV - Début de la thèse :
Directeur.trice : Sophie Schbath - Encadrant(s) : P. Halfo (Alphabio), G. Bidaut (INSERM Marseille) - Equipes : StatInfOmics

JUNKER_Romane
: Diversité génomique et fonctionnelle des communautés bactériennes associées aux produits végétaux fermentés : une approche interdisciplinaire incluant métagénomique et bioinformatique dans un contexte de recherche-action participative - SDSV - Début de la thèse :

Le projet de thèse proposé s’inscrit dans une démarche interdisciplinaire et un contexte de sciences ouvertes et participatives. Il vise à concevoir et mettre en œuvre des approches bioinformatiques et numériques innovantes pour analyser, comparer, interpréter et diffuser des jeux de données de données (meta)génomiques d’écosystèmes alimentaires fermentaires. La thèse s’appuiera pour ce travail sur les données du projet de science participative FLEGME (2019-2022) qui a pour objectif (i) d’évaluer la diversité des écosystèmes microbiens associés aux légumes fermentés fournis par des citoyens- fermenteurs et (ii) de documenter l’impact des pratiques de transformation sur la composition de l’écosystème fermentaire à partir d’échantillons produits par des petites entreprises spécialisées. Une première partie de la thèse consistera à travailler sur la conception d’un workflow bioinformatique ouvert et reproductible permettant de décrire, comparer et représenter la diversité des espèces et souches microbiennes présentes dans les échantillons de microbiotes d’aliments fermentés du projet Flegme en utilisant des modes de représentations adaptés à différents publics cibles (scientifiques, citoyens, professionnels du secteur). Une deuxième partie de la thèse ciblera la constitution de jeux de données génomiques de référence sur des espèces clé de la fermentation végétale à partir de données publiques ou produites dans le cadre de la thèse. Ce travail, qui s’inscrit dans une démarche d’ouverture des données de la recherche, s'accompagnera d’une réflexion sur la publication des métadonnées associées à ces jeux de données. La troisième partie de la thèse s’appuiera sur les jeux de données construits précédemment pour caractériser le potentiel métabolique des microbiotes associés à des fermentations alimentaires en reliant les informations phylogénétiques, les données génomiques et les analyses de métabolites produites sur les échantillons du projet Flegme. Enfin, la dernière partie de la thèse sera consacrée à la mise en place d’une démarche générique pour travailler avec un public non spécialiste sur les modalités de diffusion des résultats des analyses de diversité microbienne et du potentiel métabolique associé obtenus dans le projet FLEGME, dans une démarche de médiation des sciences et un contexte de sciences participatives.

Directeur.trice : Hélène Chiapello, Stéphane Chaillou - Encadrant(s) : Hélène Chiapello, Stéphane Chaillou, Michel-Yves Mistou, Florence Valence-Bertel - Equipes : StatInfOmics

TANNEUR Irène
: Modélisation et mise en oeuvre d'un système d'évolution dirigée dans la bactérie Bacillus subtilisée - ED577 SDSV - Début de la thèse :
Directeur.trice : P. Nicolas - Encadrant(s) : M. Jules (Micalis) - Equipes : StatInfOmics