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Context	and	Motivation	
There	is	a	strong	link	between	Stochastic	Differential	Equations	(SDEs)	and	partial	differential	equations	(PDEs).	As	a	very	
simple	example,	 let	us	consider	individuals	described	by	their	position	𝑥	on	the	real	 line	 	ℝ,	whose	motion	is	driven	by	a	
constant	speed	𝑣	perturbed	by	a	Gaussian	white	noise	with	constant	variance	𝜎!.	This	means	that	the	position	follows	the	
SDE		𝑑𝑥 = 𝑣𝑑𝑡 + 𝜎𝑑𝐵" .	Denoting	𝑝(𝑥, 𝑡)	the	probability	for	an	individual	to	occupy	position	x	at	time	t,	𝑝	satisfies	the	Fokker-
Planck	equation	(also	known	as	the	progressive	Kolmogorov	equation,	see	for	instance	[1,2])	
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More	generally,	under	suitable	regularity	conditions,	such	a	PDE	system	can	be	associated	with	an	SDE	system.	
	
SDEs,	which	incorporate	mechanistic	knowledge	through	the	drift	term,	while	capturing	intrinsic	variability	through	the	noise	
term,	provide	a	suitable	framework	for	modelling	individual	behaviours	within	biological	populations.	However,	in	many	real	
biological	systems,	access	to	individual	trajectories	in	time	is	impossible	because	key	measurements	-	such	as	microbiota	
composition,	immune	status,	or	gene	expression	-	require	individual	destruction	(e.g.,	in	microbial,	plant,	or	animal	systems).	
This	renders	classical	inference	strategies,	which	rely	on	rich	longitudinal	data	for	each	individual,	inapplicable.	Although	the	
literature	on	parameter	estimation	for	SDEs	is	extensive	[4,3,7],	most	contributions	address	settings	with	dense	longitudinal	
observations	on	the	same	individual.	In	contrast,	situations	in	which	measurements	are	destructive	or	time	sampling	is	very	
sparse	 have	 received	 very	 limited	 methodological	 attention,	 despite	 their	 importance	 in	 agricultural,	 ecological,	 and	
biomedical	applications.		
	
To	overcome	the	 impossibility	of	observing	 full	SDE	trajectories,	 this	project	proposes	an	alternative	strategy:	 instead	of	
simulating	 individual	 paths	 of	 the	 SDE	we	 propose	 to	 consider	 the	 associated	 Fokker-Planck	 PDE.	 The	 likelihood	 of	 an	
observation	 then	 becomes	 p(xi,t),	 making	 the	 inference	 formulation	 insensitive	 to	 the	 destructive	 nature	 of	 the	
measurements.		

Despite	its	theoretical	appeal,	this	PDE-based	approach	has	historically	been	considered	computationally	infeasible	when	the	
system’s	 dimension	 exceeds	 2–3,	 due	 to	 the	 curse	 of	 dimensionality	 [3].	 Recent	 progress	 in	 Physics-Informed	 Neural	
Networks	 (PINNs)	 offers	 a	 promising	 pathway	 to	 overcoming	 this	 limitation.	 PINNs	 can	 efficiently	 approximate	 high-
dimensional	 PDE	 solutions,	 reducing	 computational	 costs	 and	 enabling	 likelihood-based	 inference	 even	 in	 higher-
dimensional	systems	[5,6].	Their	integration	into	parameter	estimation—through	direct	embedding	of	parameters,	inverse	
PINN	 formulations,	 or	hybrid	 approaches	 combining	PINNs	with	 classical	methods	 such	as	MCMC—constitutes	 a	 central	
methodological	challenge	of	this	PhD.	

The	methodology	will	be	validated	on	real	biological	datasets,	with	possible	applications	in	three	complementary	domains:	
• plant–pathogen	interactions	(tomato	under	Botrytis	cinerea	stress),	in	collaboration	with	ISA	(Sophia	Antipolis);	

	• host–microbiota–pathogen	dynamics	in	poultry	infected	with	Salmonella,	in	collaboration	with	ISP	(Tours);		

• biofilm	microbiota–pathogen	systems,	in	collaboration	with	Micalis	(Paris-Saclay).	

These	settings	provide	rich	yet	destructive	datasets	and	serve	as	ideal	testbeds	for	assessing	the	robustness,	scalability,	and	
transferability	of	the	proposed	methodology	across	biological	domains.	



PhD	outline	
The	PhD	will	develop	a	Fokker-Planck	PDE-based	framework	for	parameter	inference	in	SDE	models	using	destructive	and	
sparse	biological	measurements.	The	work	will	consist	of:	
(i) formulating	inference	problems	under	partial	or	noisy	observations;	

(ii) developing	PINN-based	metamodels	to	solve	Fokker-Planck	PDEs	efficiently	in	moderate-to-high	dimensions;	

(iii) integrating	 these	metamodels	 into	 parameter	 estimation,	 either	 directly	 or	 through	 hybrid	 strategies	 (e.g.,	 PINN–
MCMC);	

(iv) applying	and	validating	the	methodology	on	real	datasets	from	plant–pathogen	interactions,	poultry	host–microbiota–
pathogen	dynamics,	and	biofilm	microbiota–pathogen	systems.	

The	doctoral	candidate	will	have	access	to	a	dedicated	laptop,	local	cluster	computing	resources,	and	GPU	facilities	at	the	
Lab-IA	for	large-scale	computations,	as	well	as	real	datasets	already	available	from	the	SMILE	(ISA),	MiMoSa	(ISP),	and	B3D	
(Micalis)	teams.	

Candidate	Skills	
The	PhD	candidate	should	possess	strong	mathematical	modelling	skills	(SDEs,	PDEs),	very	good	programming	experience	in	
Python,	and	ideally	some	familiarity	with	machine	learning.	A	strong	interest	in	interdisciplinary	biological	applications	and	
collaborative	research	is	essential.	
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